Materials Project Documentation
Return to materialsproject.org
  • Introduction
  • Frequently Asked Questions (FAQ)
    • Glossary of Terms
  • Changes and Updates
    • Database Versions
    • Website Changelog
  • Documentation Credit
  • Community
    • Getting Help
    • Getting Involved
      • Contributor Guide
      • Potential Collaborators
      • MP Community Software Ecosystem
    • Community Resources
    • Code of Conduct
  • Services
    • MPContribs
  • Methodology
    • Materials Methodology
      • Overview
      • Calculation Details
        • GGA/GGA+U Calculations
          • Parameters and Convergence
          • Hubbard U Values
          • Pseudo-potentials
        • r2SCAN Calculations
          • Parameters and Convergence
          • Pseudopotentials
      • Thermodynamic Stability
        • Energy Corrections
          • Anion and GGA/GGA+U Mixing
          • GGA/GGA+U/r2SCAN Mixing
        • Phase Diagrams (PDs)
        • Chemical Potential Diagrams (CPDs)
        • Finite Temperature Estimation
      • Electronic Structure
      • Phonon Dispersion
      • Diffraction Patterns
      • Aqueous Stability (Pourbaix)
      • Magnetic Properties
      • Elastic Constants
      • Piezoelectric Constants
      • Dielectric Constants
      • Equations of State (EOS)
      • X-ray Absorption Spectra (XAS)
      • Surface Energies
      • Grain Boundaries
      • Charge Density
      • Suggested Substrates
      • Related Materials
      • Optical absorption spectra
      • Alloys
    • Molecules Methodology
      • Overview
      • Calculation Details
      • Atomic Partial Charges
      • Atomic Partial Spins
      • Bonding
      • Metal Coordination and Binding
      • Natural Atomic and Molecular Orbitals
      • Redox and Electrochemical Properties
      • Molecular Thermodynamics
      • Vibrational Properties
      • Legacy Data
    • MOF Methodology
      • Calculation Parameters
        • DFT Parameters
        • Density Functionals
        • Pseudopotentials
        • DFT Workflow
  • Apps
    • Explore and Search Apps
      • Materials Explorer
        • Tutorial
      • Molecules Explorer
        • Tutorial
        • Legacy Data
      • Battery Explorer
        • Background
        • Tutorial
      • Synthesis Explorer
        • Background
        • Tutorial
      • Catalysis Explorer
        • Tutorial
      • MOF Explorer
        • Downloading the Data
        • Structure Details
          • QMOF IDs
          • Structure Sources
          • Finding MOFs by Common Name
          • Structural Fidelity
        • Property Definitions
          • SMILES, MOFid, and MOFkey
          • Pore Geometry
          • Topology
          • Electronic Structure
          • Population Analyses and Bond Orders
          • Symmetry
        • Version History
        • How to Cite
    • Analysis Apps
      • Phase Diagram
        • Background
        • Tutorials
        • FAQ
      • Pourbaix Diagram
        • Background
        • Tutorial
        • FAQ
      • Crystal Toolkit
        • Background
        • Tutorial
        • FAQ
      • Reaction Calculator
      • Interface Reactions
    • Characterization Apps
      • X-ray Absorption Spectra (XAS)
    • Explore Contributed Data
  • Downloading Data
    • How do I download the Materials Project database?
    • Using the API
      • Getting Started
      • Querying Data
      • Tips for Large Downloads
      • Examples
      • Advanced Usage
    • Differences between new and legacy API
    • Query and Download Contributed Data
    • AWS OpenData
  • Uploading Data
    • Contribute Data
  • Data Production
    • Data Workflows
    • Data Builders
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
Export as PDF
  1. Downloading Data

How do I download the Materials Project database?

Methods for downloading data from the Materials Project (MP) database.

PreviousExplore Contributed DataNextUsing the API

Last updated 1 month ago

Was this helpful?

The Materials Project is an open resource, with data freely available for all. This includes making its data as easy to download as possible including in bulk. Typically, downloading data manually can be slow and tedious, so we provide an API so that data can be downloaded using popular programming languages.

The Materials Project API defines a standardized manner in which the Materials Project database can be accessed by its users. The API is typically used by scientific researchers who need to retrieve large amounts of data to support their research.

For technical users, this is a RESTful API, meaning that it uses standard HTTP methods for communication, while conforming to the architecture style of software.

The Materials Project offers two APIs:

  • The main API, giving access to all data primarily generated or maintained by the Materials Project.

  • The , which gives access to user-contributed data included on the Materials Project.

To use the APIs, you can use any client that can make HTTP requests (e.g. GET, POST). However, we maintain an official Python client package (mp-api). This is the best way to interact with the Materials Project API.

(Application Programming Interface)
representational state transfer
MPContribs API
Using the API