Materials Project Documentation
Return to materialsproject.org
  • Introduction
  • Frequently Asked Questions (FAQ)
    • Glossary of Terms
  • Changes and Updates
    • Database Versions
    • Website Changelog
  • Documentation Credit
  • Community
    • Getting Help
    • Getting Involved
      • Contributor Guide
      • Potential Collaborators
      • MP Community Software Ecosystem
    • Community Resources
    • Code of Conduct
  • Services
    • MPContribs
  • Methodology
    • Materials Methodology
      • Overview
      • Calculation Details
        • GGA/GGA+U Calculations
          • Parameters and Convergence
          • Hubbard U Values
          • Pseudo-potentials
        • r2SCAN Calculations
          • Parameters and Convergence
          • Pseudopotentials
      • Thermodynamic Stability
        • Energy Corrections
          • Anion and GGA/GGA+U Mixing
          • GGA/GGA+U/r2SCAN Mixing
        • Phase Diagrams (PDs)
        • Chemical Potential Diagrams (CPDs)
        • Finite Temperature Estimation
      • Electronic Structure
      • Phonon Dispersion
      • Diffraction Patterns
      • Aqueous Stability (Pourbaix)
      • Magnetic Properties
      • Elastic Constants
      • Piezoelectric Constants
      • Dielectric Constants
      • Equations of State (EOS)
      • X-ray Absorption Spectra (XAS)
      • Surface Energies
      • Grain Boundaries
      • Charge Density
      • Suggested Substrates
      • Related Materials
      • Optical absorption spectra
      • Alloys
    • Molecules Methodology
      • Overview
      • Calculation Details
      • Atomic Partial Charges
      • Atomic Partial Spins
      • Bonding
      • Metal Coordination and Binding
      • Natural Atomic and Molecular Orbitals
      • Redox and Electrochemical Properties
      • Molecular Thermodynamics
      • Vibrational Properties
      • Legacy Data
    • MOF Methodology
      • Calculation Parameters
        • DFT Parameters
        • Density Functionals
        • Pseudopotentials
        • DFT Workflow
  • Apps
    • Explore and Search Apps
      • Materials Explorer
        • Tutorial
      • Molecules Explorer
        • Tutorial
        • Legacy Data
      • Battery Explorer
        • Background
        • Tutorial
      • Synthesis Explorer
        • Background
        • Tutorial
      • Catalysis Explorer
        • Tutorial
      • MOF Explorer
        • Downloading the Data
        • Structure Details
          • QMOF IDs
          • Structure Sources
          • Finding MOFs by Common Name
          • Structural Fidelity
        • Property Definitions
          • SMILES, MOFid, and MOFkey
          • Pore Geometry
          • Topology
          • Electronic Structure
          • Population Analyses and Bond Orders
          • Symmetry
        • Version History
        • How to Cite
    • Analysis Apps
      • Phase Diagram
        • Background
        • Tutorials
        • FAQ
      • Pourbaix Diagram
        • Background
        • Tutorial
        • FAQ
      • Crystal Toolkit
        • Background
        • Tutorial
        • FAQ
      • Reaction Calculator
      • Interface Reactions
    • Characterization Apps
      • X-ray Absorption Spectra (XAS)
    • Explore Contributed Data
  • Downloading Data
    • How do I download the Materials Project database?
    • Using the API
      • Getting Started
      • Querying Data
      • Tips for Large Downloads
      • Examples
      • Advanced Usage
    • Differences between new and legacy API
    • Query and Download Contributed Data
    • AWS OpenData
  • Uploading Data
    • Contribute Data
  • Data Production
    • Data Workflows
    • Data Builders
Powered by GitBook
On this page
  • Introduction
  • Fitted Equation Forms
  • Citation
  • Authors
  • References

Was this helpful?

Edit on GitHub
Export as PDF
  1. Methodology
  2. Materials Methodology

Equations of State (EOS)

How equations of state (EOS) are calculated on the Materials Project (MP) website.

Introduction

Thermodynamic equations of state (EOS) for crystalline solids describe material behaviors under changes in pressure, volume, entropy and temperature. Despite over a century of theoretical development and experimental testing of energy-volume (E-V) EOS for solids, there is still a lack of consensus with regard to which equation is optimal, as well as to what metrics are most appropriate for making this judgment.

Calculation of EOS is automated using self-documenting workflows compiled in the atomate code base. Atomate couples pymatgen for materials analysis, custodian for just-in-time debugging of DFT codes, and Fireworks for workflow management. The EOS workflow begins with a structure optimization and subsequently calculates the energy of isotropic deformations including ionic relaxation with volumetric strain ranging from -15.7% to 15.7% (-5% to 5% linear strain) of the optimized structure. Density-functional-theory (DFT) calculations were performed as necessary using the projector augmented wave (PAW) method as implemented in the Vienna Ab Initio Simulation Package (VASP) within the Perdew-Burke-Enzerhof (PBE) Generalized Gradient Approximation (GGA) formulation of the exchange-correlation functional. A cut-off for the plane waves of 520 eV is used and a uniform k-point density of approximately 1,000 per reciprocal atom is employed. In addition, standard Materials Project Hubbard U corrections are used for a number of transition metal oxides, as documented and implemented in the pymatgen VASP input sets. We note that the computational and convergence parameters were chosen consistently with the settings used in the Materials Project to enable direct comparisons with the large set of available MP data.

Fitted Equation Forms

Equation

Ref

Birch (Euler)

Birch (Lagrange)

Mie-Gruneisen

Murnaghan

Pack-Evans-James

Poirier-Tarantola

Tait

Vinet

ν∗=VVo\nu^* = \frac{V}{V_o}ν∗=Vo​V​, where VoV_oVo​ is the volume at zero pressure.

Eo∗∗=E(ν=1)E_o^{**} = E(\nu = 1)Eo∗∗​=E(ν=1)

Citation

To cite the EOS data in the Materials Project, please reference the following work:

Authors

  1. Katherine Latimer

  2. Shyam Dwaraknath

  3. Donny Winston

References

[1]: Birch, F. Finite elastic strain of cubic crystals. Physical Review. 71, 11, 809–824 (1947).

[2]: Roy, B. and Roy, S. B. Applicability of isothermal three-parameter equations of state of solids: A reappraisal. Journal of Physics: Condensed Matter. 17, 39, 6193–6216 (2005).

[3]: Murnaghan, F. D. The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences. 30, 244–247 (1944).

[4]: Pack, D., Evans, W., James, H. The Propagation of Shock Waves in Steel and Lead. The Proceedings of the Physical Society. 60, 1–8 (1948).

[5]: Poirier, J. P. and Tarantola, A. A logarithmic equation of state. Physics of the Earth and Planetary Interiors. 109, 1-2, 1–8 (1998).

[6]: Dymond, J. H. and Malhotra, R. The Tait equation: 100 years on. International Journal of Thermophysics. 9, 6, 941–951 (1988).

[7]: Vinet, P., Ferrante, J., Rose, J. H., Smith, J. R. Compressibility of solids. Journal of Geophysical Research. 92, 9319–9325 (1987).

PreviousDielectric ConstantsNextX-ray Absorption Spectra (XAS)

Last updated 2 years ago

Was this helpful?

Latimer, K., Dwaraknath, S., Mathew, K., Winston, D., Persson, K. A. Evaluation of thermodynamic equations of state across chemistry and structure in the materials project. NPJ Computational Materials. 4, 1, 2057-3960 (2018).

E(ν∗)\boldsymbol{E(\nu^*)}E(ν∗)
K(ν=1)\boldsymbol{K(\nu = 1)}K(ν=1)
K′(ν=1)\boldsymbol{K'(\nu = 1)}K′(ν=1)
E=Eo∗∗+BVo((ν−23−1)2+C2(ν−23−1)3)E = E_o^{**} + BV_o\Big(\big(\nu^{-\frac{2}{3}} - 1\big)^2 + \frac{C}{2}\big(\nu^{-\frac{2}{3}} - 1\big)^3\Big)E=Eo∗∗​+BVo​((ν−32​−1)2+2C​(ν−32​−1)3)
8B9\frac{8B}{9}98B​
C+4C + 4C+4
E=Eo+BVoC−BVoν23((C−2)(1−ν23)2+C(1−ν23)+C)E = E_o + BV_oC - BV_o\nu^{\frac{2}{3}}\Big(\big(C - 2\big)\big(1 - \nu^{\frac{2}{3}}\big)^2 + C\big(1 - \nu^{\frac{2}{3}}\big) + C\Big)E=Eo​+BVo​C−BVo​ν32​((C−2)(1−ν32​)2+C(1−ν32​)+C)
16B9\frac{16B}{9}916B​
C−2C - 2C−2
E=Eo+BVoC−BVoC−1(ν−13−1Cν−C3)E = E_o + \frac{BV_o}{C} - \frac{BV_o}{C - 1}\Big(\nu^{-\frac{1}{3}} - \frac{1}{C}\nu^{-\frac{C}{3}}\Big)E=Eo​+CBVo​​−C−1BVo​​(ν−31​−C1​ν−3C​)
B9\frac{B}{9}9B​
7+C3\frac{7 + C}{3}37+C​
E=Eo+BVo(C+1)(ν−C−1C+ν−1)E = E_o + \frac{BV_o}{(C + 1)}\Big(\frac{\nu^{-C} - 1}{C} + \nu - 1\Big)E=Eo​+(C+1)BVo​​(Cν−C−1​+ν−1)
BBB
C+1C + 1C+1
E=Eo+BVoC(1C(e3C(1−ν13)−1)−3(1−ν13))E = E_o + \frac{BV_o}{C}\Big(\frac{1}{C}\big(e^{3C(1 - \nu^{\frac{1}{3}})} - 1\big) - 3\big(1 -\nu^{\frac{1}{3}}\big)\Big)E=Eo​+CBVo​​(C1​(e3C(1−ν31​)−1)−3(1−ν31​))
BBB
C+1C + 1C+1
E=Eo+BVo(ln(ν))2(3−C(ln(ν)))E = E_o + BV_o\Big(ln(\nu)\Big)^2\Big(3 - C\big(ln(\nu)\big)\Big)E=Eo​+BVo​(ln(ν))2(3−C(ln(ν)))
6B6B6B
C+2C + 2C+2
E=Eo+BVoC(ν−1+1C(eC(1−ν)−1))E = E_o + \frac{BV_o}{C}\Big(\nu - 1 + \frac{1}{C}\big(e^{C(1 -\nu)} - 1\big)\Big)E=Eo​+CBVo​​(ν−1+C1​(eC(1−ν)−1))
BBB
C−1C - 1C−1
E=Eo+BVoC2(1−(1+C(ν13−1))e−C(ν13−1))E = E_o + \frac{BV_o}{C^2}\Big(1 - \big(1 + C(\nu^{\frac{1}{3}} - 1)\big)e^{-C(\nu^{\frac{1}{3}} - 1)}\Big)E=Eo​+C2BVo​​(1−(1+C(ν31​−1))e−C(ν31​−1))
B9\frac{B}{9}9B​
23C+1\frac{2}{3}C + 132​C+1
DOI:10.1038/s41524-018-0091-x
[1]
[1]
[2]
[3]
[4]
[5]
[6]
[7]