Materials Project Documentation
Return to materialsproject.org
  • Introduction
  • Frequently Asked Questions (FAQ)
    • Glossary of Terms
  • Changes and Updates
    • Database Versions
    • Website Changelog
  • Documentation Credit
  • Community
    • Getting Help
    • Getting Involved
      • Contributor Guide
      • Potential Collaborators
      • MP Community Software Ecosystem
    • Community Resources
    • Code of Conduct
  • Services
    • MPContribs
  • Methodology
    • Materials Methodology
      • Overview
      • Calculation Details
        • GGA/GGA+U Calculations
          • Parameters and Convergence
          • Hubbard U Values
          • Pseudo-potentials
        • r2SCAN Calculations
          • Parameters and Convergence
          • Pseudopotentials
      • Thermodynamic Stability
        • Energy Corrections
          • Anion and GGA/GGA+U Mixing
          • GGA/GGA+U/r2SCAN Mixing
        • Phase Diagrams (PDs)
        • Chemical Potential Diagrams (CPDs)
        • Finite Temperature Estimation
      • Electronic Structure
      • Phonon Dispersion
      • Diffraction Patterns
      • Aqueous Stability (Pourbaix)
      • Magnetic Properties
      • Elastic Constants
      • Piezoelectric Constants
      • Dielectric Constants
      • Equations of State (EOS)
      • X-ray Absorption Spectra (XAS)
      • Surface Energies
      • Grain Boundaries
      • Charge Density
      • Suggested Substrates
      • Related Materials
      • Optical absorption spectra
      • Alloys
    • Molecules Methodology
      • Overview
      • Calculation Details
      • Atomic Partial Charges
      • Atomic Partial Spins
      • Bonding
      • Metal Coordination and Binding
      • Natural Atomic and Molecular Orbitals
      • Redox and Electrochemical Properties
      • Molecular Thermodynamics
      • Vibrational Properties
      • Legacy Data
    • MOF Methodology
      • Calculation Parameters
        • DFT Parameters
        • Density Functionals
        • Pseudopotentials
        • DFT Workflow
  • Apps
    • Explore and Search Apps
      • Materials Explorer
        • Tutorial
      • Molecules Explorer
        • Tutorial
        • Legacy Data
      • Battery Explorer
        • Background
        • Tutorial
      • Synthesis Explorer
        • Background
        • Tutorial
      • Catalysis Explorer
        • Tutorial
      • MOF Explorer
        • Downloading the Data
        • Structure Details
          • QMOF IDs
          • Structure Sources
          • Finding MOFs by Common Name
          • Structural Fidelity
        • Property Definitions
          • SMILES, MOFid, and MOFkey
          • Pore Geometry
          • Topology
          • Electronic Structure
          • Population Analyses and Bond Orders
          • Symmetry
        • Version History
        • How to Cite
    • Analysis Apps
      • Phase Diagram
        • Background
        • Tutorials
        • FAQ
      • Pourbaix Diagram
        • Background
        • Tutorial
        • FAQ
      • Crystal Toolkit
        • Background
        • Tutorial
        • FAQ
      • Reaction Calculator
      • Interface Reactions
    • Characterization Apps
      • X-ray Absorption Spectra (XAS)
    • Explore Contributed Data
  • Downloading Data
    • How do I download the Materials Project database?
    • Using the API
      • Getting Started
      • Querying Data
      • Tips for Large Downloads
      • Examples
      • Advanced Usage
    • Differences between new and legacy API
    • Query and Download Contributed Data
    • AWS OpenData
  • Uploading Data
    • Contribute Data
  • Data Production
    • Data Workflows
    • Data Builders
Powered by GitBook
On this page
  • Introduction
  • Methodology
  • Constructing hyperplanes
  • Calculating lower convex envelope (halfspace intersection)
  • Visualizing the chemical potential diagram
  • Relationship to predominance diagrams
  • Citations
  • References

Was this helpful?

Edit on GitHub
Export as PDF
  1. Methodology
  2. Materials Methodology
  3. Thermodynamic Stability

Chemical Potential Diagrams (CPDs)

Overview of how chemical potential diagrams (CPDs) are constructed and visualized. These are available as part of the Phase Diagram App.

PreviousPhase Diagrams (PDs)NextFinite Temperature Estimation

Last updated 2 years ago

Was this helpful?

Introduction

The chemical potential diagram is the mathematical dual to the compositional phase diagram. To create the diagram, convex minimization is performed in energy (E) vs. chemical potential (μ) space by taking the lower convex envelope of hyperplanes. Accordingly, “points” on the compositional phase diagram become N-dimensional convex polytopes (domains) in chemical potential space.

For more information on this specific implementation of the algorithm, please cite/reference the paper below:

Methodology

Constructing hyperplanes

Calculating lower convex envelope (halfspace intersection)

Visualizing the chemical potential diagram

Relationship to predominance diagrams

Citations

Methodology

References

Todd, P. K., McDermott, M. J., Rom, C. L., Corrao, A. A., Denney, J. J., Dwaraknath, S. S., Khalifah, P. G., Persson, K. A., & Neilson, J. R. (2021). Selectivity in Yttrium Manganese Oxide Synthesis via Local Chemical Potentials in Hyperdimensional Phase Space. Journal of the American Chemical Society, 143(37), 15185-15194.

[1] Yokokawa, H. “Generalized chemical potential diagram and its applications to chemical reactions at interfaces between dissimilar materials.” JPE 20, 258 (1999).

[1] Todd, P. K., McDermott, M. J., Rom, C. L., Corrao, A. A., Denney, J. J., Dwaraknath, S. S., Khalifah, P. G., Persson, K. A., & Neilson, J. R. (2021). Selectivity in Yttrium Manganese Oxide Synthesis via Local Chemical Potentials in Hyperdimensional Phase Space. Journal of the American Chemical Society, 143(37), 15185-15194.

https://doi.org/10.1021/jacs.1c06229
https://doi.org/10.1361/105497199770335794
https://doi.org/10.1021/jacs.1c06229
Figure by Matthew McDermott.
Two dimensional (2-D) chemical potential diagram for the V-S chemical system. Energies are DFT-calculated energies directly acquired from MP database.
Three dimensional (3-D) chemical potential diagram for the V-S-O chemical system. Energies are DFT-calculated energies directly acquired from MP database.
Relationship between 3-D chemical potential diagram and predominance diagrams, which are 2-D views of the full three-dimensional chemical potential diagram surface. Figure by Matthew McDermott.