Materials Project Documentation
Return to materialsproject.org
  • Introduction
  • Frequently Asked Questions (FAQ)
    • Glossary of Terms
  • Changes and Updates
    • Database Versions
    • Website Changelog
  • Documentation Credit
  • Community
    • Getting Help
    • Getting Involved
      • Contributor Guide
      • Potential Collaborators
      • MP Community Software Ecosystem
    • Community Resources
    • Code of Conduct
  • Services
    • MPContribs
  • Methodology
    • Materials Methodology
      • Overview
      • Calculation Details
        • GGA/GGA+U Calculations
          • Parameters and Convergence
          • Hubbard U Values
          • Pseudo-potentials
        • r2SCAN Calculations
          • Parameters and Convergence
          • Pseudopotentials
      • Thermodynamic Stability
        • Energy Corrections
          • Anion and GGA/GGA+U Mixing
          • GGA/GGA+U/r2SCAN Mixing
        • Phase Diagrams (PDs)
        • Chemical Potential Diagrams (CPDs)
        • Finite Temperature Estimation
      • Electronic Structure
      • Phonon Dispersion
      • Diffraction Patterns
      • Aqueous Stability (Pourbaix)
      • Magnetic Properties
      • Elastic Constants
      • Piezoelectric Constants
      • Dielectric Constants
      • Equations of State (EOS)
      • X-ray Absorption Spectra (XAS)
      • Surface Energies
      • Grain Boundaries
      • Charge Density
      • Suggested Substrates
      • Related Materials
      • Optical absorption spectra
      • Alloys
    • Molecules Methodology
      • Overview
      • Calculation Details
      • Atomic Partial Charges
      • Atomic Partial Spins
      • Bonding
      • Metal Coordination and Binding
      • Natural Atomic and Molecular Orbitals
      • Redox and Electrochemical Properties
      • Molecular Thermodynamics
      • Vibrational Properties
      • Legacy Data
    • MOF Methodology
      • Calculation Parameters
        • DFT Parameters
        • Density Functionals
        • Pseudopotentials
        • DFT Workflow
  • Apps
    • Explore and Search Apps
      • Materials Explorer
        • Tutorial
      • Molecules Explorer
        • Tutorial
        • Legacy Data
      • Battery Explorer
        • Background
        • Tutorial
      • Synthesis Explorer
        • Background
        • Tutorial
      • Catalysis Explorer
        • Tutorial
      • MOF Explorer
        • Downloading the Data
        • Structure Details
          • QMOF IDs
          • Structure Sources
          • Finding MOFs by Common Name
          • Structural Fidelity
        • Property Definitions
          • SMILES, MOFid, and MOFkey
          • Pore Geometry
          • Topology
          • Electronic Structure
          • Population Analyses and Bond Orders
          • Symmetry
        • Version History
        • How to Cite
    • Analysis Apps
      • Phase Diagram
        • Background
        • Tutorials
        • FAQ
      • Pourbaix Diagram
        • Background
        • Tutorial
        • FAQ
      • Crystal Toolkit
        • Background
        • Tutorial
        • FAQ
      • Reaction Calculator
      • Interface Reactions
    • Characterization Apps
      • X-ray Absorption Spectra (XAS)
    • Explore Contributed Data
  • Downloading Data
    • How do I download the Materials Project database?
    • Using the API
      • Getting Started
      • Querying Data
      • Tips for Large Downloads
      • Examples
      • Advanced Usage
    • Differences between new and legacy API
    • Query and Download Contributed Data
    • AWS OpenData
  • Uploading Data
    • Contribute Data
  • Data Production
    • Data Workflows
    • Data Builders
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
Export as PDF
  1. Frequently Asked Questions (FAQ)

Glossary of Terms

Terms used by the Materials Project (MP), ordered alphabetically. Some terms are scientific terms while other terms refer to tools used in MP infrastructure.

PreviousFrequently Asked Questions (FAQ)NextChanges and Updates

Last updated 1 year ago

Was this helpful?

Builder. A builder is a little script written in the Python programming language that helps create new database collection(s) from input database collection(s). It's typically used to allow common analysis tasks to be repeated automatically, for example the calculation of "energies above hull" when new calculations are added to the database. Builders are an essential step in the Materials Project database release process and are formalized with the emmet code.

Chemical system. On Materials Project, a chemical system is a set of materials whose members all contain the same elements. It is usually noted with as dash-delimited list of elements. For example, the "Ga-In-N" chemical system would contain all materials containing Ga, In or N or combinations of these elements (Ga, In, N2, GaN, InGaN, etc.).

Correction scheme. The Materials Project performs calculations using a simulation technique with known systematic errors. A correction scheme is employed to adjust energies based on the elements present in a material to address these systematic errors. Only elements for which sufficient experimental data is available can be corrected.

Energy above hull. A measure of a material's thermodynamic stability. This value refers to a mathematical construction that can be calculated from a set of formation energies and compositions known as a convex hull, and often referred to here as a "phase diagram." However, unlike most phase diagrams, convex hulls are usually given without a temperature axis since the simulation technique used (DFT) gives predictions at zero temperature. A material which lies "on the convex hull" is predicted to be thermodynamically stable, while off the hull is predicted to be metastable or unstable. Values above 200 meV/atom are considered very large and suggest an unstable material that might not be synthesizable, however this ceiling differs significantly by chemistry. Energies above hull are given as a guide and subject to both limits of calculation precision (several meV) and also of calculation accuracy due to limitations of the simulation technique used, where errors can be significant in certain chemistries.

Mixing scheme. The Materials Project uses two slightly different simulation techniques depending on the elements present in a material. These are GGA (Generalized Gradient Approximation) and GGA+U, where the +U (Hubbard correction) is a correction applied to address systematic deficiencies in GGA when simulating elements with highly localized electrons such as d-orbitals or f-orbitals. Energies from these respective techniques are not directly comparable with each other, so a mixing scheme is employed such that elements can be compared. Details of the mixing scheme can be found in .

this paper